On Hand Gestures Recognition Using Hidden Markov Models
نویسنده
چکیده
In this paper several results concerning static hand gesture recognition using an algorithm based on left-right Hidden Markov Models (HMM) are presented. The features used as observables in the training as well as in the recognition phases are based either on the 2D Discrete Cosine Transform (DCT) or on the Principal Component Analysis (PCA). The left-right topology of the HMM together with the Baum-Welch algorithm for training and Viterbi algorithm for testing led to the best results. Simulation results show that the system has a recognition rate of 97.5% for DCT and 95% for PCA.
منابع مشابه
3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملHand Gesture Recognition Using Input-Output Hidden Markov Models
A new hand gesture recognition method based on Input– Output Hidden Markov Models is presented. This method deals with the dynamic aspects of gestures. Gestures are extracted from a sequence of video images by tracking the skin–color blobs corresponding to the hand into a body– face space centered on the face of the user. Our goal is to recognize two classes of gestures: deictic and symbolic.
متن کاملAccurate Recognition of Large Number of Hand Gestures
A hierarchical gesture recognition algorithm is introduced to recognise a large number of gestures. Three stages of the proposed algorithm are based on a new hand tracking technique to recognise the actual beginning of a gesture using a Kalman filtering process, hidden Markov models and graph matching. Processing time is important in working with large databases. Therefore, special cares are ta...
متن کاملDynamic Gesture Recognition using Transformation Invariant Hand Shape Recognition
In this thesis a detailed framework is presented for accurate real time gesture recognition. Our approach to develop a hand-shape classifier, trained using computer animation, along with its application in dynamic gesture recognition is described. The system developed operates in real time and provides accurate gesture recognition. It operates using a single low resolution camera and operates i...
متن کاملOnline Visual Recognition of Dynamic Gestures Using Dynamic Bayesian Networks
Gestures are a natural and effective altenative to command mobile robots. This paper describes an online visual recognition system to recognize a set of 5 dynamic gestures executed with the user’s right hand and oriented to command mobile robots. The system employs a radial scan segmentation algorithm combined with a statistical-based skin detection method to find the candidate face of the user...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010